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Measurements of the bow waves generated by a rectangular flat plate, immersed at a
draught D =0.2 m, towed at constant speed U = 1.75 m s−1 in calm water and held
at a heel angle 10◦ and a series of nine yaw angles α = 10◦, 15◦, 20◦, 25◦, 30◦, 45◦,
60◦, 75◦ and 90◦ are reported. The measurements show that bow wave unsteadiness
is significantly larger for the flat plate towed at yaw angles 30◦� α � 90◦ than at
10◦� α � 20◦, which are associated with the unsteady and overturning bow wave
regimes, respectively, separated by the boundary U/

√
gD = 4.4 tanα/cosα − 1 with

g ≡ acceleration of gravity. These measurements of bow wave unsteadiness provide
preliminary experimental validation of the foregoing simple theoretical relation for the
boundary between the unsteady and overturning bow wave regimes for non-bulbous
wedge-shaped ship bows with insignificant rake and flare. Extension of this relation
to more complicated ship bows, notably bows with rake and flare, is also considered.

1. Introduction
It is well know that a rigid body that advances at constant speed in a quiescent fluid

does not necessarily generate a steady flow. The wake behind a body, notably a bluff
body, is a classic example of this well-known property of fluid flows. An especially
important and widely studied example of unsteady body wake is vortex shedding
by a circular cylinder. Numerous other examples of instabilities and unsteadiness
(associated with nonlinear effects) are found in fluid mechanics.

The specific example considered here is the bow wave generated by a ship that
advances at constant speed U along a straight path in calm water. A ship bow wave is
arguably the most visible, complex and important feature of free-surface flow about a
ship and accordingly has been extensively studied: numerical and (to a lesser extent)
experimental or analytical studies of ship bow waves are reported in Ogilvie (1973),
Standing (1974), Chapman (1976), Miyata & Inui (1984), Çalişal & Chan (1989),
Maniar, Newman & Xu (1991), Xu (1991), Tulin & Wu (1996), Dong, Katz &
Huang (1997), Roth, Mascenik & Katz (1999), Fontaine, Faltinsen & Cointe (2000),
Landrini, Colagrossi & Tulin (2001), Tulin & Landrini (2001), Waniewski, Brennen
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(a) (b)

Figure 1. Examples of (a) steady overturning and (b) unsteady bow wave due to a vertical
rectangular flat plate. The flat plate, immersed at a draught D =0.2 m, is towed at a yaw
(incidence) angle α =15◦ (a) or 45◦ (b) and a speed U = 2.25 m s−1 (a) or 2 m s−1 (b). The
corresponding draught-based Froude numbers are F ≈ 1.61 (a) and 1.43 (b). The values of α
and F that correspond to these two photographs are marked with × in figure 2(a).

& Raichlen (2002), Karion et al. (2003), Muscari & Di Mascio (2004), Landrini
(2006), Noblesse et al. (2006), Olivieri et al. (2007), Noblesse et al. (2008 a, b) and
Shakeri et al. (2008).

However, whether a ship in steady motion generates a steady or unsteady bow wave
is a basic issue that does not appear to have been examined in the literature, notably
in the studies listed above, with the (recent) exception of Noblesse et al. (2008b).
Yet, the issue is both of theoretical interest and of practical importance, notably for
the decomposition of the drag of a ship into components associated with viscosity,
wavemaking and wavebreaking and the appearance of a ship’s wake and related ship
signature.

Elementary fundamental theoretical considerations given in Noblesse et al. (2008b)
lead to two main types of ship bow waves: ‘overturning bow waves’, which consist of
thin sheets of water that are largely stable and steady (until the plunging waves hit
the main body of water), and ‘unsteady bow waves’. Examples of ‘steady’ overturning
and unsteady bow waves – also widely called ‘plunging’ or ‘spilling’ waves in the
literature – are shown on the left and right sides of figure 1. Other photographs of
overturning and unsteady bow waves are shown in e.g. figure 6 of Noblesse et al.
(2008b), where a simple theoretical relation for the boundary between the unsteady
and overturning bow wave regimes is given for wedge-shaped ship bows (without
bulb, rake or flare) with draught D and waterline entrance angle 2α.

This theoretical relation divides the flow domain 0 � α , 0 � F ≡ U/
√

gD into two
regions separated by the boundary curve

F ≡ U/
√

gD = 4.4 tan α/ cosα − 1, (1.1)

where g stands for the acceleration of gravity. The curve defined by (1.1) is shown in
figure 2. The bow wave generated by a wedge-shaped ship bow with a draught-based
Froude number F and waterline entrance angle 2α that lies to the right of the
curve (1.1) is necessarily unsteady, and this region is marked ‘unsteady’ in figure 2.
The region between the boundary curve (1.1) and the axis α = 0 corresponds to the
overturning bow wave regime, where steady flow may exist. In other words, steady
flow is not possible to the right of the curve (1.1), but unsteady flow is possible to
the left of the curve. The curve (1.1) intersects the axis F =0 for a waterline entrance
angle 2α ≈ 25◦. Thus, a ship with a fine bow, specifically with waterline entrance angle
2α smaller than approximately 25◦, may generate a steady overturning bow wave at
any speed. However, a ship with a fuller bow, with 25◦< 2 α, can only generate a
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Figure 2. The curves in these three figures mark the theoretical boundary, defined by
the relation (1.1), that divides the unsteady bow wave regime (on the right sides of the
curves) and the overturning bow wave regime (between the curves and the vertical axis
α = 0). The symbols in the figures mark the draught-based Froude numbers F and the
yaw angles α for which the bow waves due to a rectangular flat plate have been observed
(photographs and videos) or measured (in this study). Specifically, the symbols × and �
in (a) correspond to the two photographs shown in figure 1 and the six photographs
shown in figure 6 of Noblesse et al. (2008b), respectively. The symbols in (b) correspond
to videos for yaw angles α = 15◦, 25◦ and 30◦ at a series of Froude numbers: six Froude
numbers 0.89 � F � 1.78 for α = 15◦, seven Froude numbers 0.71 � F � 1.78 for α =25◦ and
four Froude numbers 0.89 � F � 1.43 for α =30◦. (These three videos can be viewed at
http://www.scs.gmu.edu/∼rlohner/pages/pics/freesurf.html.) Finally, the full squares in (c)
correspond to the measurements of bow wave profiles, for F = 1.25 and nine yaw angles
α = 10◦, 15◦, 20◦, 25◦, 30◦, 45◦, 60◦, 75◦ and 90◦, which are considered here.

steady bow wave if the ship speed is higher than the critical speed defined (in terms
of α) by the relation (1.1).

The division of ship bow waves into two complementary regimes – identified here
as unsteady and overturning bow wave regimes – is not based on observed flow
characteristics, i.e. on flow observations, but on theoretical considerations. Thus, the
definition of these complementary regimes is ‘theoretical’ rather than ‘experimental’.
Specifically, the relation (1.1) that separates the two regimes is based on the upper
bound Eg/U 2� 1/2 for the elevation E of the free surface for steady flows and a
relation, given in Noblesse et al. (2006), for the height of the bow wave of a wedge-
shaped ship bow. The boundary (1.1) is also shown in Noblesse et al. (2008b) to
correspond to null flow velocity (in a frame of reference attached to the moving ship)
at the crest of the bow wave.

Limited experimental validation of the theoretical relation (1.1) for the boundary
between the unsteady and overturning bow wave regimes is given in figure 6 of
Noblesse et al. (2008b), which shows six photographs of the bow waves due to a
rectangular flat plate towed at a draught-based Froude number F = 1.25 (draught
D = 0.2 m and speed U = 1.75 m s−1), a heel angle 10◦ and a series of six yaw
(incidence) angles α =10◦, 15◦, 20◦, 25◦, 30◦ and 45◦. These six values of F and α are
marked with � in figure 2(a). Videos of the bow waves due to the flat plate towed at
yaw angles α = 15◦, 25◦ and 30◦ and a series of Froude numbers (six Froude numbers
0.89 � F � 1.78 for α = 15◦, seven Froude numbers 0.71 � F � 1.78 for α = 25◦ and
four Froude numbers 0.89 � F � 1.43 for α =30◦) have also been made. The values
of α and F that correspond to the three videos are marked in figure 2(b).

While these visual flow observations (photographs and videos) are interesting and
useful – and consistent with the theoretical relation (1.1) for the boundary between
the unsteady and overturning bow wave regimes – they are qualitative. Thus, an



170 G. Delhommeau, M. Guilbaud, L. David, C. Yang and F. Noblesse

experimental validation, based on measurements rather than visual observations, of
(1.1) is needed. Although detailed experimental measurements of ship bow waves are
reported in several of the previously listed experimental studies, notably Dong et al.
(1997), Roth et al. (1999) and Shakeri et al. (2008), these experimental studies do not
directly address the issue under consideration. Indeed, no systematic experimental
investigation of the boundary between the unsteady and overturning ship bow wave
regimes appears to have been reported in the literature. Simple measurements of
bow wave unsteadiness, with the aim of seeking to test the validity of the theoretical
relation (1.1) for the boundary between the unsteady and overturning ship bow wave
regimes, are then reported here.

In this regard, it should be noted that the boundary (1.1) does not provide
information about the degree of flow unsteadiness, although the analysis given in
Noblesse et al. (2008b) indicates that a bow wave can be expected to be the more
steady and stable, as (α , F ) is located further to the left of the boundary curve (1.1).
However, this theoretical boundary indicates that flow unsteadiness can be expected to
be significantly greater for (α , F ) located to the right (unsteady) side of the boundary
curve, where a change of flow regime is predicted to occur, than to the left (steady
overturning) side of the boundary. The purpose of the measurements reported here
is precisely to test this prediction of a significant increase in flow unsteadiness, which
can be taken as evidence of a flow regime change, as the boundary (1.1) is crossed.

2. Experimental measurements of bow wave unsteadiness
The experimental measurements of bow waves reported in Noblesse et al. (2006,

2008a, b) show that a rectangular flat plate immersed at a draught D and towed at an
incidence (yaw) angle α with speed U generates a bow wave that closely resembles the
bow wave due to a ship that advances at speed U and has a wedge-shaped bow with
draught D and waterline entrance angle 2α . This analogy was used in the previously
mentioned studies to expand the experimental database of bow wave measurements
for wedge-shaped ship bows available in the literature. The analogy is again used here
to investigate the bow wave unsteadiness and the related boundary (1.1) between the
overturning and unsteady bow wave regimes.

Specifically, we consider the bow waves due to a rectangular flat plate, of length
0.782 m and height 0.5 m, immersed at a draught D = 0.2 m and held at a 10◦

heel angle (angle between the plate and the vertical axis). The flat plate is towed
at a constant speed U =1.75 m s−1 (draught-based Froude number F≈ 1.25), in the
towing tank of the École Centrale de Nantes. Nine yaw angles α = 10◦, 15◦, 20◦, 25◦,
30◦, 45◦, 60◦, 75◦ and 90◦ are successively considered. The yaw angles 10◦� α � 20◦

and 30◦� α � 90◦ correspond to the overturning and unsteady bow wave regimes,
respectively, to the left and right sides of the boundary curve in figure 2(c). The angle
α = 25◦ lies on the boundary separating these two regimes.

For each of the nine yaw angles α , i.e. for each of the nine runs of the tow
carriage, computer-driven colour photographs (8 for 10◦� α � 45◦, 10 for α = 75◦ and
90◦, 11 for α = 60◦) of the bow wave were taken. The colour photographs were first
transformed, using a greyscale, to sharpen the contrast between the plate and the
bow wave. Next, corrections were made to account for projection effects and related
geometric distortions due to the camera lenses. Circular markers (5 mm in diameter,
spaced 2 cm apart horizontally and vertically) on the plate were used for this purpose.
Specifically, a third-order camera model was determined, in a preliminary calibration,
from the markers on a picture of the flat plate at rest and used in both the vertical
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and the horizontal directions. This process resulted in a two-dimensional picture in
a frame of reference attached to the plate. The errors associated with the process
were estimated by measuring the distance between the projection of a marker on the
plate and its actual position. These errors were used to quantify the quality of the
camera model. The errors for the horizontal and vertical coordinates of the markers
were found to be smaller than 0.5 mm and approximately 1 mm, respectively. The
corresponding mean errors were approximately 0.002 mm and 0.02 mm, and the root
mean square errors are approximately 0.1 mm and 0.32 mm, respectively, for the
entire set of markers on the plate. Finally, the resulting black and white pictures
were used to digitize (using digitization software) the contact curve between the plate
and the bow wave, i.e. to determine the bow wave profile in a frame of reference
attached to the plate. This operation was performed manually by clicking about 40
points along the curve on the computer screen. The coordinates of the points were
automatically determined and saved in a data file.

Figure 3 shows the series of nine bow wave profiles determined as explained in the
foregoing. There is little variation among the bow waves on the left side of figure 3,
i.e. for the yaw angles α = 10◦, 15◦ and 20◦ that correspond to the overturning bow
wave regime according to the theoretical relation (1.1). Considerably more variation
can be observed in figure 3 for α =30◦, 45◦, 60◦, 75◦ and 90◦, which correspond to
the unsteady bow wave regime defined by (1.1).

Two alternative quantitative measures of the variations among the bow waves shown
in figure 3 are considered in figure 4. Specifically, figure 4(a) and 4(b) show the largest
variation Zmax −Zmin and the root mean square variation σz , respectively, among the
bow waves shown in figure 3 for nine values X= 50 , 100 , 150 , 200 , 250 , 300 , 400 ,
500 and 600 mm of the distance from the leading edge of the plate. The range 0.16
� Xg/U 2� 1.92 corresponding to the range 50 mm � X � 600 mm is marked by
vertical lines in figure 3 . Figure 4 shows that the largest variation Zmax − Zmin, and
the root mean square variation σz are significantly larger for 30◦� α � 90◦ than for
10◦� α � 20◦.

This result is further illustrated in figure 5, where the values of Zmax − Zmin and σz

shown in figure 4 are averaged for α = 10◦, 15◦ and 20◦ on one hand and α = 30◦, 45◦,
60◦, 75◦ and 90◦ on the other hand. The resulting average values of Zmax −Zmin and
σz are marked ‘overturning’ and ‘unsteady’ in figure 5. The line marked ‘boundary’ in
figure 5 corresponds to α =25◦. The ratios δunsteady

z /δoverturning
z and σunsteady

z /σ overturning
z

of the ‘unsteady’ and ‘overturning’ average values of σz and δz ≡ Zmax − Zmin depicted
in figure 5 are approximately equal to the values given in Table 1 for the nine values
of X considered in figures 4 and 5. These ratios and figure 5 show that bow waves
for 30◦� α � 90◦ exhibit a significantly higher degree of unsteadiness than bow waves
for 10◦� α � 20◦, especially for small values of X near the leading edge of the plate.

3. Boundary between unsteady and overturning bow wave regimes for arbitrary
ship hulls

The boundary (1.1) is based on the upper bound Zb g/U 2� 1/2 for steady free-
surface flows and the relation

Zb g

U 2
≈ 2.2

1+F

tanα

cosα
(3.1)

for the height Zb of the ‘steady’ bow wave (in the overturning bow wave regime).
The relation (3.1) and the related boundary (1.1) can be used for a broad range of
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Figure 3. Bow waves due to a rectangular flat plate, immersed at a draught D = 0.2 m, towed
at constant speed U = 1.75 m s−1 in calm water and held at a heel angle 10◦ and nine yaw
angles α = 10◦, 15◦, 20◦, 25◦, 30◦, 45◦, 60◦, 75◦ and 90◦. The waves for α =10◦, 15◦ and 20◦

and for α = 30◦, 45◦, 60◦, 75◦ and 90◦ correspond to the overturning and unsteady bow wave
regimes, respectively, to the left and right of the boundary curve shown in figure 2(c). The
wave for α =25◦ corresponds to the boundary between these two regimes.
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Unsteady and overturning ship bow wave regimes 173

X (mm) 50 100 150 200 250 300 400 500 600

δunsteady
z /δoverturning

z 7.7 6.6 4.5 5.4 4.7 4.7 4.1 4.2 4.4
σunsteady

z /σ overturning
z 7.7 6.6 4.4 5.3 4.5 4.8 4.6 4.0 4.0

Table 1. Ratios δ
unsteady
z /δ

overturning
z and σ

unsteady
z /σ

overturning
z of the ‘unsteady’ and

‘overturning’ average values of σz and δz ≡ Zmax −Zmin depicted in figure 5.
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Figure 5. Averages of the variations (a) Zmax −Zmin and (b) σz shown in figure 4 for α = 10◦,
15◦ and 20◦ and for α =30◦, 45◦, 60◦, 75◦ and 90◦. These averages correspond to the overturning
and unsteady bow wave regimes, respectively, and are marked ‘overturning’ and ‘unsteady’ in
the figure. The third curve in the figure, marked ‘boundary’, corresponds to α = 25◦, which lies
on the boundary (1.1) between the overturning and unsteady wave regimes.

ship hulls, e.g. hull forms similar to the Series 60 ship model. However, these relations
are not valid for ships with bulbous bows and for fast ships, which typically have
bows with large rake and flare. They can be extended to more complicated ship
bows (notably ship bows with appreciable rake and flare), using the upper bound
Zb g/U 2� 1/2 and an estimate of the bow wave height Zb , in the manner used in
Noblesse et al. (2008b).

In particular, the influence of rake and flare on the bow wave height Zb is considered
in Noblesse et al. (in press) for a class of ruled ship bows, illustrated in figure 6, defined
by four parameters: the draught D , the rake angle δ (the angle between the ship
stem and the vertical axis) and the entrance angles 2α and 2α′ of the top and
bottom waterlines (at the mean free surface Z = 0 and ship draught z = −D). For
this four-parameter family of ship bows, which are reasonable approximations for a
broad class of fast ships, the relation (3.1) can be extended as

Zb g

U 2
≈ 2.2

1+F

tanα + tanα′

cosα + cosα′ ζb (F, δ , ϕ) with ϕ ≡ tanα − tanα′

tanα + tanα′ . (3.2)

The function ζb (F, δ , ϕ) is determined in Noblesse et al. (in press) using thin-ship
theory. There, ζb is given for six values of the draught-based Froude number F that
correspond to F/(1+F ) = 0.3 , 0.4 , . . . , 0.8 , nine rake angles δ = 60◦, 45◦, . . . , −60◦

and nine values of the hull flare parameter ϕ = 1 , 0.75 , . . . , −1 . In the special case
δ = 0 and ϕ = 0 (i.e. α′ = α), for which the four-parameter family of ship bows defined
in figure 6 is identical to the two-parameter (draught D and waterline entrance angle
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Figure 6. Four-parameter family of ship bows defined by the draught D, the top-waterline
entrance angle 2 α , the bottom-waterline entrance angle 2α′ and the rake angle δ .

2α) family of wedge-shaped bows (without rake and flare) considered in Noblesse
et al. (2008b), we have ζb = 1, and expressions (3.2) and (3.1) are identical as expected.
The Bernoulli bound Zb g/U 2� 1/2 for steady free-surface flows and (3.2) then show
that the boundary between the overturning and unsteady bow wave regimes is given
by

F = 4.4
tanα + tanα′

cosα + cosα′ ζb (F, δ , ϕ) −1 . (3.3)

This modification of (1.1) approximately accounts for the influence of rake and flare
for ship bows that can be approximated by the four-parameter family defined in
figure 6.

The boundary between the overturning and unsteady wave regimes for more
general ship bows, notably bulbous bows, can be approximately determined in a
similar manner, i.e. from the Bernoulli bound Zb g/U 2� 1/2 and an estimate of the
bow wave height Zb in the overturning bow wave regime. This estimate can be
obtained using alternative steady-flow calculation methods, including semi-analytical
theories based on various approximations (thin-ship, slender-ship, 2d+t theories),
potential-flow panel (boundary integral equation) methods that rely on the use of
a Green function (elementary Rankine source or Havelock source that satisfies the
radiation condition and the Michell linearized free-surface boundary condition) and
computational fluid dynamics (CFD) methods.

4. Conclusion
The measured experimental bow wave profiles for a rectangular flat plate towed at

nine yaw angles 10◦� α � 90◦ exhibit a significantly higher degree of unsteadiness for
30◦� α � 90◦ than for 10◦� α � 20◦. These experimental measurements agree with the
authors’ previous visual flow observations (photographs and videos) and also with the
theoretical relation (1.1) that defines the boundary between the unsteady and ‘steady’
overturning ship bow wave regimes.

Thus, the experimental measurements of bow wave unsteadiness reported here
provide preliminary experimental validation of the theoretical relation (1.1) for the
boundary between the unsteady and overturning ship bow wave regimes, also widely
identified as plunging and spilling waves in the literature, for (non-bulbous) wedge-
shaped ship bows (with insignificant rake and flare). Additional, more detailed,
experimental validation would of course be useful, both for the simplest class of
wedge-shaped ship bows considered here and for more complicated ship bows, notably
wedge-shaped ship bows with rake and flare for which the boundary (1.1) can be
modified as (3.3).
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